
To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

Advanced Windsurf
Class Duration
7 hours of live training delivered over 1-2 days to accommodate your 
scheduling needs

Student Prerequisites
• Basic understanding of programming concepts
• Experience with a programming language such as Java, Python, 

JavaScript/TypeScript, or C#
• Completed Windsurf Essentials course or have similar experience

Target Audience
Designed for senior software engineers, staff/lead developers, tech leads, 
and engineering managers who want to operationalize AI-assisted 
development for real codebases. It’s ideal for teams modernizing workflows, 
reducing cycle time, and improving review quality in regulated or high-
reliability environments. L&D partners and org leaders seeking scalable, 
repeatable practices will find clear rules, checklists, and playbooks that 
translate directly into PR-ready changes. The course runs live (online or in-
person) and assumes fluency with modern version control, testing, and code 
review practices.

Description
This live, hands-on course equips professional developers to ship higher-
quality software faster using high-leverage AI workflows. You’ll master a 
practical mental model for when to ask, when to code, and when to cascade 
tasks; retrieve the exact code context quickly and keep AI grounded; and 
coordinate multi-step changes through reviewable diffs and checkpoints. 
We’ll keep refactors small and safe, converge debugging with evidence-
driven loops, and speed up verification with targeted, coverage-aware tests. 
You’ll also learn safe terminal automation and produce consistent, PR-ready 
artifacts that scale across teams. The result is measurable gains in developer
productivity, software delivery velocity, and risk reduction—without 
sacrificing code correctness or maintainability.

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

Learning Outcomes
1. Apply the Tab vs Command vs Cascade mental model to choose the 

fastest tool and sequence work with an ask-first approach.
2. Plan and execute disciplined patch loops (plan → patch → diff-review → 

run → iterate) while selecting the right model for each task.
3. Retrieve and ground the right context fast by pinning evidence, 

scoping precisely, and using effective prompts to find entry points and 
data flows.

4. Orchestrate multi-step changes with clear control patterns, 
checkpointing, and clean task splits between refactors and behavior 
changes.

5. Perform small, safe refactors using repeatable playbooks, API-stability 
guardrails, bounded cross-cutting edits, and sharp diff-review 
heuristics.

6. Drive debugging to convergence from symptom to minimal repro using
log-first tactics, stack-trace navigation, and rapid hypothesis testing.

7. Accelerate verification with targeted unit tests, sturdier test design, 
intentional snapshot updates, and coverage-guided additions.

8. Automate terminal workflows safely with reviewable commands, 
environment guardrails, and repeatable git/test/format/codegen 
patterns, producing PR-ready outputs at team scale.

Training Materials
Comprehensive courseware is distributed online at the start of class. All 
students receive a downloadable MP4 recording of the training.

Software Requirements
Student may choose to simply watch the instructor or follow along with the 
instructor. If students choose to code along and/or complete lab exercises, 
they will need the Windsurf editor. Much of the class can be completed with 
the free version of Windsurf, but a Pro subscription is recommened.

Training Topics
High-Leverage Windsurf Mental Model

• Tab vs Command vs Cascade (Ask vs Code): map common dev tasks to
the fastest tool

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

• “Ask-first” sequencing: clarify intent, risks, and constraints before 
generating patches

• Patch discipline at speed: plan → patch → diff-review → run → iterate 
(repeat in tight loops)

• Choosing the right model for the moment: lightweight edits vs deeper 
multi-step reasoning (switch intentionally per task)

Context Retrieval That Finds the Right Code Fast
• What gets used as context: open files, indexed repo, selected text, and

recent editor/terminal activity
• “Pin the evidence”: select/paste key logs, stack traces, and code paths 

so Ask mode stays grounded
• Retrieval prompts that work: “find entry points”, “trace data flow”, “list

callers”, “identify invariants”
• Avoiding context poisoning: keep scope small, confirm assumptions, 

and re-anchor with exact snippets
• Fast context patterns: rapid “where is this used?” loops before any 

edits (optimize for correctness)
Cascade Orchestration for Multi-Step Changes

• Ask mode for architecture and approach: tradeoffs, edge cases, rollout 
plan, and a short checklist

• Code mode for execution: multi-file patches as reviewable diffs (treat 
as proposed commits)

• Control patterns: “one file at a time”, “stop after each step”, “wait for 
confirmation before proceeding”

• Checkpointing: “summarize what changed + what remains” after each 
patch

• When to split the task: isolate mechanical refactors from behavior 
changes for cleaner reviews

Refactors That Stay Small and Safe While Moving Fast
• Refactor playbooks: rename → extract → move → verify (repeatable, 

commit-sized steps)
• API stability guardrails: “don’t change public surface”, “keep behavior 

identical”, “no new dependencies”
• Cross-cutting edits with bounded blast radius: target 

packages/modules, avoid “whole repo” changes

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

• Migration tactics: incremental rollout, feature flags, and compatibility 
shims

• Diff review heuristics: spotting accidental logic changes, shadowed 
variables, and unintended formatting churn

Debugging and Triage Workflows That Converge
• From symptom to repro: tighten reproduction steps and isolate the 

minimal failing case
• Log-first debugging: ask for instrumentation suggestions, then 

implement the smallest logging patch
• Stack-trace navigation: identify the owning layer, the suspicious 

boundary, and the first “unexpected” value
• Hypothesis loop: propose 2–3 causes → test quickly → keep only what’s

supported by evidence
• “Stop and go manual” triggers: flaky repro, hidden side effects, or any 

patch that grows too large
Test and Verification Acceleration

• Targeted tests: generate a narrow unit test from the bug, then 
strengthen assertions and add edge cases

• Test refactors: reduce brittleness, remove incidental coupling, and 
improve failure messages

• Snapshot discipline: update intentionally, explain diffs, and add non-
snapshot assertions where possible

• Coverage-guided work: identify untested seams and add the smallest 
tests that lock in behavior

• Verification loop: run the fastest checks first, then expand (lint → unit 
→ integration)

Terminal Automation Without Regrets
• Safe terminal automation knobs: allow list / deny list and when to 

enable Turbo mode
• “Reviewable commands” habit: generate, edit, then run—especially for

destructive operations
• Guardrails for environments: staging vs prod awareness, read-only 

defaults, and careful credential handling
• Debug sessions: share selected terminal output to keep Ask mode 

grounded

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

• Common safe patterns: git/status/diff loops, test runs, formatting, and 
codegen commands

Team-Ready Consistency at Scale
• Rules vs Memories: what should be enforced vs what should be 

remembered across conversations
• Thin, high-signal rules: style, architecture boundaries, error handling 

conventions
• Shareable workflow library: reusable “bugfix”, “refactor”, and “test-

writing” playbooks for the team
• PR-ready output: change summaries, reviewer checklists, and “risk 

notes” that prevent rework

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890

	Advanced Windsurf
	Class Duration
	Student Prerequisites
	Target Audience
	Description
	Learning Outcomes
	Training Materials
	Software Requirements
	Training Topics
	High-Leverage Windsurf Mental Model
	Context Retrieval That Finds the Right Code Fast
	Cascade Orchestration for Multi-Step Changes
	Refactors That Stay Small and Safe While Moving Fast
	Debugging and Triage Workflows That Converge
	Test and Verification Acceleration
	Terminal Automation Without Regrets
	Team-Ready Consistency at Scale



