
To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

Rust Parallel Programming
Class Duration

• 14 hours of intensive training with live instruction delivered over two to
four days to accommodate varied scheduling needs

Student Prerequisites
• Software engineers with Rust programming experience
• Software engineers with a very good understanding of Rust’s approach

to memory management and data structures

Target Audience
• Systems programmers building high-performance applications
• Backend developers optimizing compute-intensive workloads
• Engineers migrating parallel C/C++ code to Rust
• Developers building real-time data processing pipelines
• Teams working on scientific computing or simulations

Description
This course teaches Rust developers how to build high-performance parallel 
and concurrent applications. Students will learn to leverage Rust’s powerful 
ecosystem including Rayon for data parallelism, Crossbeam for advanced 
concurrency primitives, and atomic operations for lock-free programming. 
The course also covers unsafe Rust and FFI for systems-level integration, 
plus declarative and procedural macros for metaprogramming. Through 
hands-on exercises, students will gain practical experience parallelizing real 
workloads while maintaining Rust’s safety guarantees.

Learning Outcomes
• Distinguish between concurrency and parallelism and choose the right 

approach for different workloads
• Use Rayon to convert sequential code to parallel with minimal changes
• Implement work-stealing patterns and configure thread pools for 

optimal performance
• Apply Crossbeam utilities for scoped threads, concurrent queues, and 

advanced synchronization

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

• Understand atomic operations and memory ordering for lock-free data 
structures

• Design inter-process communication using shared memory and IPC 
channels

• Write safe abstractions over unsafe code and integrate with C libraries 
via FFI

• Create declarative macros with macro_rules! and procedural derive 
macros

Training Materials
All students receive comprehensive courseware covering all topics in the 
course. Courseware is distributed via GitHub in the form of documentation 
and extensive code samples. Students practice the topics covered through 
challenging hands-on lab exercises.

Software Requirements
Students will need a free, personal GitHub account to access the courseware.
Student will need permission to install Rust and Visual Studio Code on their 
computers. Also, students will need permission to install Rust Crates and 
Visual Studio Code Extensions. If students are unable to configure a local 
environment, a cloud-based environment can be provided.

Training Topics
Parallel Programming

• What is Parallel Programming?
• Concurrency vs Parallelism
• When to Use Parallel Programming

Data Parallelism with Rayon
• Introduction to Rayon
• Parallel Iterators (par_iter, par_iter_mut)
• Converting Sequential to Parallel Code
• Parallel Methods (map, filter, for_each, fold)
• Parallel Sorting (par_sort, par_sort_by)
• par_bridge for Non-Parallel Iterators
• Work Overhead and When Not to Parallelize

Thread Pools and Work Stealing

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

• What is Work Stealing?
• Rayon’s Thread Pool Architecture
• Configuring Thread Pool Size
• The join() Primitive
• Recursive Work Splitting
• Scoped Threads with Crossbeam

Crossbeam Utilities
• Overview of Crossbeam Crates
• crossbeam-channel (MPMC Channels)
• crossbeam-deque (Work-Stealing Deques)
• crossbeam-queue (Concurrent Queues)
• crossbeam-utils (Scoped Threads, Backoff)
• ArrayQueue and SegQueue

Atomics and Memory Ordering
• Atomic Types (AtomicBool, AtomicUsize, AtomicPtr)
• Memory Ordering (Relaxed, Acquire, Release, SeqCst)
• Compare-and-Swap (CAS) Operations
• Building Lock-Free Data Structures
• When to Use Atomics vs Locks

Inter-Process Communication
• When to Use Multiple Processes
• ipc-channel (Servo’s IPC Library)
• Shared Memory with POSIX shm_open
• Semaphores for Process Synchronization
• ipmpsc (Ring Buffer IPC)
• Trade-offs: Threads vs Processes

Unsafe Rust
• What is Unsafe Rust?
• When and Why to Use Unsafe
• Unsafe Superpowers Overview

Raw Pointers and Memory
• Raw Pointers (const T, mut T)
• Creating Raw Pointers from References

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

• Dereferencing Raw Pointers
• Pointer Arithmetic
• Null Pointer Handling

Unsafe Functions and Traits
• Calling Unsafe Functions
• Writing Unsafe Functions
• Unsafe Traits (implementing and defining)
• Safe Abstractions over Unsafe Code

Foreign Function Interface (FFI)
• What is FFI?
• The extern Keyword and ABI
• Calling C Functions from Rust
• Exposing Rust Functions to C (#[no_mangle])
• Using CString and CStr for Strings
• Portable Type Aliases (c_int, c_char, etc.)
• Handling Callbacks Across FFI
• Preventing Panics at FFI Boundaries

FFI Tooling
• rust-bindgen (Generate Rust from C headers)
• cbindgen (Generate C headers from Rust)
• The libc Crate

Macros and Metaprogramming
• What is a Macro?
• Declarative vs Procedural Macros
• When to Use Macros vs Functions

Declarative Macros (macro_rules!)
• Define a Macro with macro_rules!
• Matchers and Transcribers
• Fragment Specifiers (ident, expr, ty, tt, etc.)
• Repetition Patterns ($(…),* and $(…),+)
• Handling Trailing Commas
• Multiple Match Arms
• Macro Hygiene Rules

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

Procedural Macros
• What are Procedural Macros?
• The Three Types (Derive, Attribute, Function-like)
• Setting Up a proc-macro Crate
• Working with TokenStreams

Derive Macros
• Creating Custom Derive Macros
• The syn Crate (Parsing)
• The quote Crate (Code Generation)
• The proc-macro2 Crate
• Helper Attributes with darling

Attribute and Function-like Macros
• Attribute Macros (#[my_macro])
• Function-like Procedural Macros
• Real-World Use Cases

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890

	Rust Parallel Programming
	Class Duration
	Student Prerequisites
	Target Audience
	Description
	Learning Outcomes
	Training Materials
	Software Requirements
	Training Topics
	Parallel Programming
	Data Parallelism with Rayon
	Thread Pools and Work Stealing
	Crossbeam Utilities
	Atomics and Memory Ordering
	Inter-Process Communication
	Unsafe Rust
	Raw Pointers and Memory
	Unsafe Functions and Traits
	Foreign Function Interface (FFI)
	FFI Tooling
	Macros and Metaprogramming
	Declarative Macros (macro_rules!)
	Procedural Macros
	Derive Macros
	Attribute and Function-like Macros



