
To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

Mastering Rust
Class Duration

• 5 days of comprehensive training
• Deep dive into advanced Rust programming

Target Audience
• Software developers with programming experience
• Basic understanding of programming concepts
• Suitable for both seasoned developers and newcomers to systems 

programming

Description
The Mastering Rust course is a comprehensive deep dive into the world of 
Rust programming. Whether you’re a seasoned developer or new to systems 
programming, this training will equip you with the skills and knowledge to 
become proficient with Rust. Discover the language’s unique features, 
including its focus on safety, concurrency, and performance optimization. 
Explore advanced topics like macros, metaprogramming, and FFI integration 
while building real-world applications. By the end of this course, you’ll have 
the mastery and confidence to tackle complex projects, write efficient code, 
and harness Rust’s full potential in your software development endeavors.

Learning Objectives
• Understand the Rust Philosophy
• Set Up and Navigate the Rust Environment
• Grasp Basic Rust Syntax and Semantics
• Learn Control Flow and Logic
• Learn Ownership and Borrowing Concepts
• Utilize Tuples, Enums, Structs, and Vectors
• Employ Pattern Matching
• Harness Rust’s Concurrency Model
• Create Custom Macros
• Write Rust Tests
• Create Documentation with Rustdoc

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

Training Materials
All students receive comprehensive courseware covering all topics in the 
course. Courseware is distributed via GitHub in the form of documentation 
and extensive code samples. Students practice the topics covered through 
challenging hands-on lab exercises.

Software Requirements
Students will need a free, personal GitHub account to access the courseware.
Student will need permission to install Rust and Visual Studio Code on their 
computers. Also, students will need permission to install Rust Crates and 
Visual Studio Extensions. If students are unable to configure a local 
environment, a cloud-based environment can be provided.

Training Topics
Introduction

• What is Rust?
• Rust’s Philosophy and Goals
• History and motivation
• Rust Community
• The Rust Playground

Install Rust
• Script
• macOS Homebrew
• Platform Installers

Rust Editors
• VSCode with Extensions
• Rust Rover
• Debug Rust in VSCode
• GitHub Copilot

Hello World
• Create a new Project
• Main Function
• Print to the Console
• Comments

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

Cargo
• What is Cargo?
• Run Command
• Build Command
• Build Release Command
• Install Third-Party Crates

Scalar Types and Data
• Rust Types
• Constants
• Immutable Variables
• Mutable Variables

Code Logic
• If Statement
• Loop with Break
• While Loop

Functions
• Define a Function
• Call a Function
• Parameter Types
• Return Types
• Closure Functions

Modules
• Import Modules from Standard Library
• Import Modules from Third-Party Crates
• Define Custom Modules
• Import Custom Modules

Built-In Macros
• print! and println!
• format!
• assert!, assert_eq!, and assert_ne!
• vec!
• include_str! and include_bytes!
• cfg! and env!

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

• panic!
Memory Management

• Problems with Manual Management
• Problems with Garbage Collection
• Ownership & Borrowing
• References
• Lifetimes

Strings and String Slices
• What is a String and a String Slice?
• String Slices
• String Objects
• Convert Between Slices and Strings
• Parse Number from String
• Trim String
• Print Strings with Interpolation

Tuples
• What is a Tuple?
• Heterogeneous Elements
• Access Elements
• Destructuring
• Immutable

Enums
• What is an Enum?
• Define an Enum
• Using Enums
• Enum Variants
• Enum Methods
• Enums and Pattern Matching
• Result Enum
• Option Enum
• Enums vs Structs

Structs
• What is a Struct?

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

• Create Instance
• Field Init Shorthand
• Struct Update Syntax
• Tuple Structs
• Unit-Like Structs
• Ownership of Struct Data
• Function Implementation
• Associated Functions
• Stuct Methods
• Constructor Pattern

Vectors
• What is a Vector?
• Create a Vector
• Add and Remove Elements
• Access Elements
• Iterate over Elements
• Slicing, Length, and Capacity
• Common Vector Operations
• Understand Memory Management
• Ownership and Borrowing Rules

Collections and Iterators
• Vectors, arrays, and slices
• HashMaps and hash sets
• Iteration and iterators

Traits
• What is a trait?
• How does a trait related to traditional OOP interfaces?
• Defining a trait
• Implementing a trait
• Default implementations
• Traits as parameters
• Traits as return types
• Traits as bounds

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

Generics
• What is a generic?
• How does a generic related to traditional OOP generics?
• Defining a generic
• Implementing a generic
• Generic bounds
• Multiple generic types
• Where clauses

Pattern Matching
• What is Pattern Matching?
• Match Statement
• If Let Statement
• While Let Statement
• Destructuring Stucts and Tuples
• Pattern Matching with Enums
• Pattern Matching with Functions
• Pattern Matching and Ownership
• Refutability and Irrefutability

Concurrent Programming
• What is Concurrent Programming?
• Using Multiple Threads
• Mutex, RwLock, and Arc
• Message Passing with Channels
• Sync and Send Traits
• Futures and Async/Await

Unsafe Rust
• What is Unsafe Rust?
• Raw Pointers
• Dereferencing Raw Pointers
• Calling Unsafe Functions
• Creating Safe Abstractions
• Unsafe Traits
• Unsafe Blocks
• Unsafe Superpowers

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890


To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

Macros and Metaprogramming
• What is a Macro?
• Define a Macro with macro_rules!
• Using Pattern Matching
• Define Expansion
• Use the Custom Macro

Tests
• What is a Test?
• Test Functions
• Test Organization
• Test Attributes
• Test Coverage
• assert!, assert_eq!, and assert_ne!

Documentation with Rustdoc
• What is Rustdoc?
• Add Documentation to Rust Code
• Triple-Slash Comments and the #[doc] Attribute
• Generate Documentation
• Linking and Cross-Referencing Documentation

Conclusion
• Course wrap-up and advanced topics

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved

mailto:sales@cloudcontraptions.com
tel:4345096890

	Mastering Rust
	Class Duration
	Target Audience
	Description
	Learning Objectives
	Training Materials
	Software Requirements
	Training Topics
	Introduction
	Install Rust
	Rust Editors
	Hello World
	Cargo
	Scalar Types and Data
	Code Logic
	Functions
	Modules
	Built-In Macros
	Memory Management
	Strings and String Slices
	Tuples
	Enums
	Structs
	Vectors
	Collections and Iterators
	Traits
	Generics
	Pattern Matching
	Concurrent Programming
	Unsafe Rust
	Macros and Metaprogramming
	Tests
	Documentation with Rustdoc
	Conclusion



