

[image:]

To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

Rust Refresher
Class Duration
14 hours of intensive training with live instruction delivered over two to four days to accommodate varied scheduling needs
Student Prerequisites
· Software engineers with some Rust programming experience
Target Audience
Software engineers who find Rust’s memory‑management model, particularly its lifetime system, challenging, as well as those who struggle with its error‑handling patterns and data‑structure design, can benefit from a focused refresher class.
Description
This refresher course equips software engineers with a concise, hands‑on review of Rust’s essential concepts, from scalar types and variable ownership to advanced topics such as lifetimes, pattern matching, and zero‑cost generics. Participants will deepen their understanding of Rust’s memory‑safe model, master idiomatic use of enums, structs, and collections, and learn how to leverage traits and monomorphized generics to write performant, allocation‑free code. Ideal for developers who have dabbled in Rust and want to solidify their skills for production‑grade projects.
Learning Outcomes
· Explain ownership and borrowing rules and demonstrate idiomatic Rust usage that prevents data races and dangling references.
· Construct and manipulate tuples, enums, structs, and vectors, applying standard patterns for each data structure’s typical use case.
· Use idiomatic pattern‑matching techniques (match, if let, while let) to safely decompose and process complex data.
· Write generic functions and types that are monomorphized at compile time, showcasing strategies for eliminating heap allocations.
· Evaluate when dynamic traits and heap allocation are appropriate versus using static dispatch and stack‑only data, and justify the choice.
Training Materials
All students receive comprehensive courseware covering all topics in the course. Courseware is distributed via GitHub in the form of documentation and extensive code samples. Students practice the topics covered through challenging hands-on lab exercises.
Software Requirements
Students will need a free, personal GitHub account to access the courseware. Student will need permission to install Rust and Visual Studio Code on their computers. Also, students will need permission to install Rust Crates and Visual Studio Code Extensions. If students are unable to configure a local environment, a cloud-based environment can be provided.
Training Topics
Scalar Types and Variables
· Primitive Types: Integers, Floats, Booleans, and Characters
· Constants and Static Values
· Immutability by Default
· Mutable Bindings with mut
· Variable Shadowing
· Scope and Block Expressions
Memory Management
· Pitfalls of Manual Memory Management
· Overhead of Garbage Collection
· Rust’s Ownership Model
· Move Semantics
· Borrowing and References
· Lifetime Annotations
· The Borrow Checker in Practice
Strings and String Slices
· Heap-Allocated String vs Stack-Based &str
· Creating and Manipulating String Slices
· Building and Modifying Owned Strings
· Converting Between String and &str
· Parsing Strings into Numeric Types
· Trimming, Splitting, and Joining
· String Formatting and Interpolation
Tuples
· Tuple Fundamentals and Use Cases
· Storing Heterogeneous Types
· Indexing and Accessing Elements
· Destructuring into Named Bindings
· Unit Tuples and Empty Returns
· Tuples as Lightweight Data Containers
Enums
· Defining Enums and Variants
· Variants with Associated Data
· Implementing Methods on Enums
· The Option<T> Type for Nullable Values
· The Result<T, E> Type for Error Handling
· When to Use Enums vs Structs
Structs
· Defining Named-Field Structs
· Creating and Initializing Instances
· Field Init Shorthand Syntax
· Updating Instances with Struct Update Syntax
· Tuple Structs for Positional Data
· Unit-Like Structs as Markers
· Struct Ownership and Borrowed Fields
· Implementing Methods with impl
· Associated Functions and Constructors
Vectors
· The Vec<T> Growable Array Type
· Creating Vectors with vec! and Vec::new()
· Pushing, Popping, and Inserting Elements
· Safe Access with get() vs Direct Indexing
· Iterating with iter(), iter_mut(), and into_iter()
· Slicing, Length, and Capacity Management
· Memory Layout and Reallocation Behavior
· Ownership and Borrowing with Vector Elements
Pattern Matching
· Pattern Matching Fundamentals
· The match Expression and Exhaustiveness
· Concise Matching with if let
· Looping with while let
· Destructuring Structs, Tuples, and Enums
· Guards and Bindings in Patterns
· Ownership and Borrowing in Patterns
· Refutable vs Irrefutable Patterns
Generics and Traits
· Generic Type Parameters in Functions and Structs
· Defining and Implementing Traits
· Trait Bounds and where Clauses
· Static Dispatch via Monomorphization
· Binary Size Implications of Generics
· Dynamic Dispatch with Trait Objects (dyn Trait)
· Choosing Between Static and Dynamic Dispatch

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved
image1.png
Cloud
Contraptions

TRAINING & CONSULTING

image2.svg

