

[image:]

To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

Rust Essentials
Class Duration
· 3 days of live online training
· Hands-on, beginner-friendly approach
Target Audience
· Software developers with programming experience
· Basic understanding of programming concepts
· Not a general introduction to programming course
Description
The Rust Essentials course is designed to provide participants with a foundational understanding of the Rust programming language. This hands-on, beginner-friendly course covers key concepts such as ownership, borrowing, and lifetimes, enabling students to write safe and efficient code. Participants will learn how to create custom data structures, work with pattern matching, and harness the power of Rust’s modern features. For experienced software developers looking to add Rust to your skillset, this course equips you with the essential knowledge needed to become proficient in one of the industry’s most innovative and sought-after languages.
Learning Objectives
· Understand the Rust Philosophy
· Set Up and Navigate the Rust Environment
· Grasp Basic Rust Syntax and Semantics
· Learn Control Flow and Logic
· Learn Ownership and Borrowing Concepts
· Utilize Tuples, Enums, Structs, and Vectors
· Employ Pattern Matching
Training Materials
All students receive comprehensive courseware covering all topics in the course. Courseware is distributed via GitHub in the form of documentation and extensive code samples. Students practice the topics covered through challenging hands-on lab exercises.
Software Requirements
Students will need a free, personal GitHub account to access the courseware. Student will need permission to install Rust and Visual Studio Code on their computers. Also, students will need permission to install Rust Crates and Visual Studio Extensions. If students are unable to configure a local environment, a cloud-based environment can be provided.
Training Topics
Introduction
· What is Rust?
· Rust’s Philosophy and Goals
· History and motivation
· Rust Community
· The Rust Playground
Install Rust
· Script
· macOS Homebrew
· Platform Installers
Rust Editors
· VSCode with Extensions
· Debug Rust in VSCode
· GenAI Tooling (ex. GitHub Copilot)
Hello World
· Create a new Project
· Main Function
· Print to the Console
· Comments
Cargo
· What is Cargo?
· Run Command
· Build Command
· Build Release Command
· Install Third-Party Crates
Scalar Types and Data
· Rust Types
· Constants
· Immutable Variables
· Mutable Variables
Code Logic
· If Statement
· Loop with Break
· While Loop
Functions
· Define a Function
· Call a Function
· Parameter Types
· Return Types
· Closure Functions
Modules
· Import Modules from Standard Library
· Import Modules from Third-Party Crates
· Define Custom Modules
· Import Custom Modules
Built-In Macros
· print! and println!
· format!
· vec!
· include_str! and include_bytes!
· cfg! and env!
· panic!
Memory Management
· Problems with Manual Management
· Problems with Garbage Collection
· Ownership & Borrowing
· References
· Lifetimes
Strings and String Slices
· What is a String and a String Slice?
· String Slices
· String Objects
· Convert Between Slices and Strings
· Parse Number from String
· Trim String
· Print Strings with Interpolation
Tuples
· What is a Tuple?
· Heterogeneous Elements
· Access Elements
· Destructuring
· Immutable
Enums
· What is an Enum?
· Define an Enum
· Using Enums
· Enum Variants
· Enum Methods
· Enums and Pattern Matching
· Result Enum
· Option Enum
· Enums vs Structs
Structs
· What is a Struct?
· Create Instance
· Field Init Shorthand
· Struct Update Syntax
· Tuple Structs
· Unit-Like Structs
· Ownership of Struct Data
· Function Implementation
· Associated Functions
· Stuct Methods
· Constructor Pattern
Vectors
· What is a Vector?
· Create a Vector
· Add and Remove Elements
· Access Elements
· Iteration and iterators
· Iterate over Elements
· Slicing, Length, and Capacity
· Common Vector Operations
· Understand Memory Management
· Ownership and Borrowing Rules
Pattern Matching
· What is Pattern Matching?
· Match Statement
· If Let Statement
· While Let Statement
· Destructuring Stucts and Tuples
· Pattern Matching with Enums
· Pattern Matching with Functions
· Pattern Matching and Ownership
· Refutability and Irrefutability
Conclusion
· Course wrap-up and next steps

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved
image1.png
Cloud
Contraptions

TRAINING & CONSULTING

image2.svg

