

[image:]

To discuss this course and customizations:
Call: 434-509-5680 or Email: sales@cloudcontraptions.com

Mastering Rust
Class Duration
· 5 days of comprehensive training
· Deep dive into advanced Rust programming
Target Audience
· Software developers with programming experience
· Basic understanding of programming concepts
· Suitable for both seasoned developers and newcomers to systems programming
Description
The Mastering Rust course is a comprehensive deep dive into the world of Rust programming. Whether you’re a seasoned developer or new to systems programming, this training will equip you with the skills and knowledge to become proficient with Rust. Discover the language’s unique features, including its focus on safety, concurrency, and performance optimization. Explore advanced topics like macros, metaprogramming, and FFI integration while building real-world applications. By the end of this course, you’ll have the mastery and confidence to tackle complex projects, write efficient code, and harness Rust’s full potential in your software development endeavors.
Learning Objectives
· Understand the Rust Philosophy
· Set Up and Navigate the Rust Environment
· Grasp Basic Rust Syntax and Semantics
· Learn Control Flow and Logic
· Learn Ownership and Borrowing Concepts
· Utilize Tuples, Enums, Structs, and Vectors
· Employ Pattern Matching
· Harness Rust’s Concurrency Model
· Create Custom Macros
· Write Rust Tests
· Create Documentation with Rustdoc
Training Materials
All students receive comprehensive courseware covering all topics in the course. Courseware is distributed via GitHub in the form of documentation and extensive code samples. Students practice the topics covered through challenging hands-on lab exercises.
Software Requirements
Students will need a free, personal GitHub account to access the courseware. Student will need permission to install Rust and Visual Studio Code on their computers. Also, students will need permission to install Rust Crates and Visual Studio Extensions. If students are unable to configure a local environment, a cloud-based environment can be provided.
Training Topics
Introduction
· What is Rust?
· Rust’s Philosophy and Goals
· History and motivation
· Rust Community
· The Rust Playground
Install Rust
· Script
· macOS Homebrew
· Platform Installers
Rust Editors
· VSCode with Extensions
· Rust Rover
· Debug Rust in VSCode
· GitHub Copilot
Hello World
· Create a new Project
· Main Function
· Print to the Console
· Comments
Cargo
· What is Cargo?
· Run Command
· Build Command
· Build Release Command
· Install Third-Party Crates
Scalar Types and Data
· Rust Types
· Constants
· Immutable Variables
· Mutable Variables
Code Logic
· If Statement
· Loop with Break
· While Loop
Functions
· Define a Function
· Call a Function
· Parameter Types
· Return Types
· Closure Functions
Modules
· Import Modules from Standard Library
· Import Modules from Third-Party Crates
· Define Custom Modules
· Import Custom Modules
Built-In Macros
· print! and println!
· format!
· assert!, assert_eq!, and assert_ne!
· vec!
· include_str! and include_bytes!
· cfg! and env!
· panic!
Memory Management
· Problems with Manual Management
· Problems with Garbage Collection
· Ownership & Borrowing
· References
· Lifetimes
Strings and String Slices
· What is a String and a String Slice?
· String Slices
· String Objects
· Convert Between Slices and Strings
· Parse Number from String
· Trim String
· Print Strings with Interpolation
Tuples
· What is a Tuple?
· Heterogeneous Elements
· Access Elements
· Destructuring
· Immutable
Enums
· What is an Enum?
· Define an Enum
· Using Enums
· Enum Variants
· Enum Methods
· Enums and Pattern Matching
· Result Enum
· Option Enum
· Enums vs Structs
Structs
· What is a Struct?
· Create Instance
· Field Init Shorthand
· Struct Update Syntax
· Tuple Structs
· Unit-Like Structs
· Ownership of Struct Data
· Function Implementation
· Associated Functions
· Stuct Methods
· Constructor Pattern
Vectors
· What is a Vector?
· Create a Vector
· Add and Remove Elements
· Access Elements
· Iterate over Elements
· Slicing, Length, and Capacity
· Common Vector Operations
· Understand Memory Management
· Ownership and Borrowing Rules
Collections and Iterators
· Vectors, arrays, and slices
· HashMaps and hash sets
· Iteration and iterators
Traits
· What is a trait?
· How does a trait related to traditional OOP interfaces?
· Defining a trait
· Implementing a trait
· Default implementations
· Traits as parameters
· Traits as return types
· Traits as bounds
Generics
· What is a generic?
· How does a generic related to traditional OOP generics?
· Defining a generic
· Implementing a generic
· Generic bounds
· Multiple generic types
· Where clauses
Pattern Matching
· What is Pattern Matching?
· Match Statement
· If Let Statement
· While Let Statement
· Destructuring Stucts and Tuples
· Pattern Matching with Enums
· Pattern Matching with Functions
· Pattern Matching and Ownership
· Refutability and Irrefutability
Concurrent Programming
· What is Concurrent Programming?
· Using Multiple Threads
· Mutex, RwLock, and Arc
· Message Passing with Channels
· Sync and Send Traits
· Futures and Async/Await
Unsafe Rust
· What is Unsafe Rust?
· Raw Pointers
· Dereferencing Raw Pointers
· Calling Unsafe Functions
· Creating Safe Abstractions
· Unsafe Traits
· Unsafe Blocks
· Unsafe Superpowers
Macros and Metaprogramming
· What is a Macro?
· Define a Macro with macro_rules!
· Using Pattern Matching
· Define Expansion
· Use the Custom Macro
Tests
· What is a Test?
· Test Functions
· Test Organization
· Test Attributes
· Test Coverage
· assert!, assert_eq!, and assert_ne!
Documentation with Rustdoc
· What is Rustdoc?
· Add Documentation to Rust Code
· Triple-Slash Comments and the #[doc] Attribute
· Generate Documentation
· Linking and Cross-Referencing Documentation
Conclusion
· Course wrap-up and advanced topics

Copyright 2025 Cloud Contraptions LLC – All Rights Reserved
image1.png
Cloud
Contraptions

TRAINING & CONSULTING

image2.svg

